Table 2. Bond lengths and angles

	Old	New		Old	New
$\mathrm{N}(1)-\mathrm{C}(2)$	1.497 A	$1 \cdot 491 \AA$	$\mathrm{C}(7)-\mathrm{O}(8)$	$1.262 \AA$	1.260 A
$\mathrm{C}(2)-\mathrm{C}(3)$	1.528	1.519	$\mathrm{C}(7)-\mathrm{O}(9)$	1.239	1.232 A
$\mathrm{C}(3)-\mathrm{O}(4)$	1.249	1.249	$\mathrm{N}(1) \cdots \mathrm{O}$ (8)	2.712	2.747
$\mathrm{C}(3)-\mathrm{N}(5)$	1.328	$1 \cdot 319$	$\mathrm{N}(1) \cdots \mathrm{O}(9)$	2.729	2.728
N(5)-C(6)	1.462	1.451	$\mathrm{N}(1) \cdots \mathrm{O}(8)$	2.782	2.790
Standard deviation $\pm 0.007 \AA$ ¢					
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110 \cdot 3^{\circ}$	109.5°	$\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	112.7°	$112.4{ }^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(4)$	$120 \cdot 1$	$120 \cdot 4$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	117.6	117.9
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(5)$	$116 \cdot 8$	$116 \cdot 3$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(9)$	115.6	$115 \cdot 5$
$\mathrm{O}(4)-\mathrm{C}(3)-\mathrm{N}(5)$	$123 \cdot 1$	$123 \cdot 3$	$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$126 \cdot 7$	126.5
$\mathrm{C}(3)-\mathrm{N}(5)-\mathrm{C}(6)$	$121 \cdot 6$	121.2			
Standard deviation $\pm 0 \cdot 4^{\circ}$					

earlier measurements agree with the new values within their own much larger standard deviations. The differences between the hydrogen and deuterium compounds, although perhaps significant, are now quite small and the earlier remarks (Biswas, Hughes, Sharma \& Wilson, 1968 p.50) regarding these discrepancies should be largely disregarded.

Because the chief error is in the length of a and because the molecular plane is nearly parallel to (100), the errors have only a small effect on the intramolecular bond lengths and angles. The maximum error is $0.011 \AA$ and the r.m.s. error is $\pm 0.007 \AA$. Table 2 shows the new values of the bond lengths. The maximum error in an H-bond length is $0.035 \AA$, for the $N(1) \cdots O(8)$ bond, which is nearly parallel to a. Other H-bond lengths (Table 2) and van der Waals contacts have in general much smaller errors, the r.m.s. value being well under $0.01 \AA$. With the exception of the comments on the perdeutero compound the other arguments given in
the original paper still stand. In particular, the old estimates of standard deviations apply to the newly calculated bond lengths and angles given in Table 2.

I am indebted to Dr Freeman for prepublication use of his lattice constants and for the newly calculated bond lengths, which are based on our parameters and the new lattice constants.

References

Biswas, A. B., Hughes, E. W., Sharma, B. D. \& Wilson, J. N. (1968). Acta Cryst. B24, 40.

Freeman, H. C., Paul, G. L. \& Sabine, T. M. (1967). Private communication.
Hughes, E. W. \& Moore, W. J. (1949). J. Amer. Chem. Soc. 71, 2618.

Acta Cryst. (1968). B24, 1129
Crystal data for $\mathbf{U O}_{2}(\mathrm{OAc})_{2} \cdot 2 \mathrm{Ph}_{3} \mathrm{AsO}$ and $\left[\mathrm{UO}_{2}(\mathbf{O A c})_{2} \cdot \mathbf{P h}_{3} \mathbf{A s O}\right]_{2}$. By Giuliano Bandoli, Rodolfo Graziani and Bruno Zarli, Centro Chimica delle Radiazioni e dei Radioelementi and Centro Strutturistica Chimica C.N.R. Padova, via Loredan 4, Italy.
(Received 26 March 1968)

Crystal data are reported for $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$ and $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{AsO}_{2}\right.$, which are crystallographically isomorphous with their respective triphenylphosphine analogues.

Four uranyl acetate complexes with triphenylphosphine and triphenylarsine oxides were recently prepared (Volponi, Zarli \& Panattoni, 1967). They are $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{PO}\right]_{2}$ and $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{PO}$, for which the crystal data were obtained from precession and Weissenberg photographs and have been reported elsewhere (Graziani, Zarli \& Bandoli, 1967), and $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{AsO}_{2}\right.$ and $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$.
From oscillation and precession photographs taken with $\mathrm{Cu} K \alpha$ radiation, $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{AsO}_{2}\right.$ was shown to be isomorphous with $\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{PO}\right]_{2}$, the structure of
which has been successfully determined (Panattoni, Bandoli, Graziani \& Croatto, 1968). The presence of dimers was recognized for both compounds by molecular weight measurements.

X-ray powder diffraction photographs were taken for $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$ and $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{PO}$ with Cu $K \alpha$ radiation on a 114.6 mm camera using sodium fluoride as internal standard, and by comparison the compounds were found to be isomorphous. Densities were measured by the flotation method with the use of mixtures of symtetrabromoethane and sym-dichloroethane. The cell di-

Table 1. Agreement of calculated and observed interplanar spacings

$\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{PO}$				$\underset{d_{\mathrm{obs}}}{\mathrm{UO}_{2}(\mathrm{OAc})_{2}} \cdot \underset{I_{\mathrm{rel}}}{2 \mathrm{Ph}_{3}} \mathrm{AsO}^{2}$	
$d_{\text {eale }}$	$d_{\text {obs }}$	Irel	hkl		
9.568	9.571	6	020	9.561	5
8.676	$8 \cdot 674$	9	011	8.672	8
7.980	7.971	10	$11 \overline{1}$	7.971	10
6.469	$6 \cdot 464$	9	$12 \overline{1}$	6.464	8
			111	$5 \cdot 246$	3
4.704	$4 \cdot 710$	5	$12 \overline{2}$	$4 \cdot 709$	4
$4 \cdot 390$ \}	$3 \cdot 387$	5	\{ 202 I ,	$4 \cdot 387$	5
$4 \cdot 390$ \}	3.387	8	\{ 221	4387	5
$4 \cdot 142$	$4 \cdot 144$	8	131		
4.014	4.004	3	220		
$3 \cdot 869$	$3 \cdot 873$	2	032	$3 \cdot 873$	2
$3 \cdot 570$	$3 \cdot 562$	7	112	$3 \cdot 566$	6
$3 \cdot 412$	$3 \cdot 409$,	042	3.414	6
3.234	$3 \cdot 227$	4	242	$3 \cdot 236$	2
2.892			033		
2.894	$2 \cdot 890$	7	142	2•898	5
2.893	2.890	7	313	2.898	5
$2 \cdot 891$			332		
$2 \cdot 671$			104		
2.674	$2 \cdot 675$	3	214	$2 \cdot 683$	2
2.676			330		
$2 \cdot 139$	$2 \cdot 140$	4	424 ,	$2 \cdot 143$	3
$2 \cdot 138$ \}	$2 \cdot 140$	4	$44 \overline{3}$ \}	$2 \cdot 143$	3
2.067	2.065	2	124	2.065	2

Table 2. Crystal data

Compound	$\left[\mathrm{UO}_{2}(\mathrm{OAc})_{2} . \mathrm{Ph}_{3} \mathrm{AsO}\right]_{2}$	$\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$
M.W.	$1420 \cdot 8$	$1032 \cdot 6$
M.P. $\left({ }^{\circ} \mathrm{C}\right)$	245	260
System	Triclinic	Monoclinic
Space group	P1 ${ }^{*}$	$P 2_{1} / \mathrm{c}$
$a(\AA)$	8.31 ± 0.02	9.868 ± 0.013
b (\AA)	11.05 ± 0.03	19.166 ± 0.016
$c(\AA)$	$13 \cdot 66 \pm 0.04$	$10 \cdot 880 \pm 0.011$
α	$101^{\circ} 50^{\prime} \pm 12^{\prime}$	
β	$91^{\circ} 10^{\prime} \pm 10^{\prime}$	$116^{\circ} 32^{\prime} \pm 5^{\prime}$
$\stackrel{\gamma}{\square}$	$109^{\circ} 12^{\prime} \pm 15^{\prime}$	
$V\left(\AA^{3}\right)$	$1150 \cdot 5$	$1841 \cdot 1$
$D_{m}\left(\mathrm{~g} . \mathrm{cm}^{-3}\right)$	2.03	$1 \cdot 85$
$D_{x}\left(\mathrm{~g} . \mathrm{cm}^{-3}\right)$	2.05	1.86
Z	1	2
$F(000)$	668	996

* Space group $P \mathrm{~T}$ was chosen since the structure of the phosphine analogue was shown to be centrosymmetric.
mensions for $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$ were calculated by the least-squares method.
The main reflexions in the powder diagram are listed in Table 1. Table 2 shows the crystal data. Since $\mathrm{UO}_{2}(\mathrm{OAc})_{2} .2 \mathrm{Ph}_{3} \mathrm{AsO}$ crystallizes in $P 2_{1} / c$ with only two molecules per cell, the uranium atoms must be at centres of symmetry. The most probable resulting structure is consistent with eight-coordination to the heavy atom, realized by two chelate acetate groups and two ligand oxygen atoms in hexagonal transplanar arrangement normal to the linear uranyl group.

No further X-ray work on these compounds is contemplated at present.

References

Graziani, R., Zarli, B. \& Bandoli, G. (1967). Ric. Sci. 37, 984.
Panattoni, C., Bandoli, G., Graziani, R. \& Croatto, U. (1968). Chem. Comm. p. 278.

Volponi, L., Zarli, B. \& Panattoni, C. (1967). Annual Meet. 163. Ist. Chim. Gen. Univ. Padova.

